
September 2004 www.stsc.hill.af.mil 11

The global information grid (GIG) is
the globally interconnected, secured,

end-to-end set of information capabili-
ties, associated processes, and personnel
for collecting, processing, storing, dissem-
inating, and managing information on
demand to warfighters, policy makers, and
support personnel [1]. The GIG supports
all U.S. Department of Defense (DoD),
national security, and related intelligence
community missions and functions. It
provides capabilities from all operating
locations and interfaces to coalition,
allied, and non-DoD users and systems.

The GIG as a transformational vision
aims at achieving information superiority
in a network-centric environment. It
enables various systems to interoperate
with each other. For the warfighters, it
brings power to the edge through a Task,
Post, Process, Use process. For the busi-
ness and intelligence communities, it pro-
vides the infrastructure for effective
information gathering and collaborative
operation.

This transformation from a central-
ized, sequential thinking and a static one-
to-one interfacing paradigm to a distrib-
uted, parallel information sharing and
dynamic collaboration approach requires
a fundamental shift in the way systems are
built. Specifically, it lends itself to a ser-
vice-oriented architecture (SOA) on a
ubiquitous network carrying information
on demand.

In an SOA, a set of loosely coupled
services works together seamlessly and
securely over a network to provide func-
tionalities to end users. These services
have well-defined interface contracts.
Supported by service management tools
at the enterprise level, they are published,
discovered, mediated, and consumed in
an orderly fashion.

The service-oriented approach is
inherently dynamic. It allows fast forma-
tion of expedient communities of interest
(COI) to handle highly volatile situations
and changing mission requirements. It
also supports the stable operation of
longstanding or institutional COIs. The
SOAs are flexible because each service

encapsulates the underlying platforms
and technologies that support it. The ser-
vices provided at the enterprise level are
therefore agnostic to those specific plat-
forms and technologies.

The Command, Control, Communi-
cations, Computers, Intelligence, Surveil-
lance, and Reconnaissance (C4ISR)
Architecture Framework [2], along with
its three standard views and common
products, has been widely used in building
C4ISR systems. The framework was orig-
inally developed in 1996 by the DoD to

provide guidance for describing architec-
tures. Version 2 was officially mandated in
1998 as the DoD Architectural Frame-
work and is being superceded by the DoD
Architecture Framework (DoDAF).
Standard techniques employed by C4ISR
include point-to-point interfacing, static
connectivity, and data-flow analysis.
These are more suited to the traditional
sequential processing, system-oriented,
and one-to-one integration paradigm.

With the ongoing efforts to transform
the DoD into a network-centric, service-
oriented environment, the following

questions are often raised:
• Does the C4ISR framework apply to

such a service-oriented architecture?
• How is it supplemented with other

techniques to fully describe such
architectures?

• What are the set of products that
describe the essence of a service-ori-
ented architecture?
Whereas full answers to these ques-

tions will require extensive discussion,
this article describes a pragmatic ap-
proach that naturally fits the service-ori-
ented environment. This approach uti-
lizes object-oriented design and analysis
techniques to supplement the standard
C4ISR framework for developing SOAs.
As the DoD moves toward a network-
centric environment supported by SOAs,
this approach provides a timely and rigor-
ous methodology for specifying future
enterprise architectures, and has been
recently applied to the architecture devel-
opment of Net-Centric Enterprise
Services (NCES) with satisfactory results.

The NCES is a collaborative environ-
ment that supports vertical/horizontal
interoperability between DoD business
and warfighting domains, as well as the
national intelligence domain [3]. The
NCES provides the core enterprise ser-
vices that support various standing and
expedient COIs on the GIG.

Using this approach, the use cases for
the NCES core enterprise services were
developed. The corresponding opera-
tional and systems views were construct-
ed as part of an integrated architecture
product. Activities in the use cases were
also mapped to the Net-Centric Opera-
tions and Warfare Reference Model [4].

In the following sections, I first
describe the approach for formulating an
SOA. Using an enterprise messaging sys-
tem as an example, I then discuss the cor-
responding architecture views that
embody the approach in the C4ISR
framework1.

Formulating an SOA
In formulating an SOA, you start with
operation. Here the focus is how end

Service-Oriented Architecture and the C4ISR Framework

Dr. Yun-Tung Lau
Science Applications International Corporation

This article presents an architecture modeling approach for formulating service-oriented architectures such as those being devel-
oped on the global information grid. The approach uses object-oriented techniques to supplement the traditional Command,
Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance Framework.

“In an SOA
[service-oriented

architecture], a set of
loosely coupled services

works together
seamlessly and securely

over a network to
provide functionalities to
end users.These services

have well-defined
interface contracts.”



12 CROSSTALK The Journal of Defense Software Engineering September 2004

users, systems, or applications use ser-
vices. Use cases in Unified Modeling
Language (UML) [5] describe the external
behavior of a service as seen or utilized
by an actor (user, system, or application).
The boundary of the service in a use case
is clearly delineated. The interaction of

the actor with the service is described
without revealing the internal details of
the service. Use case is, therefore, a nat-
ural tool for describing operational activ-
ities in an SOA.

Based on the operational concept, the
scope of services, and the high-level
requirements, one may identify a set of
high-level critical use cases. These are the
use cases that the architecture must sup-
port to meet the minimal requirements.
Use cases are not requirements.
Nevertheless, they illustrate what func-
tions architecture provides and highlight
the requirements. Therefore, use cases are
the first step in formulating an SOA (see
Figure 1).

In each use case, typically two or more
nodes interact with each other by
exchanging information. If a node is a
service consumer, then it is an actor in
the use case for that service. If it is a
provider, then it is a component provid-
ing that service. Traditionally, a node in
the C4ISR framework represents a role,
an organization, an operational facility,
etc. For an SOA, its scope is expanded to
include shared resources and services.
Hence a service node interacts with con-
sumer nodes to provide services. Use case
and node are, therefore, the primary
objects in describing the operational

aspects of an SOA, as shown in Figure 1.
Once the operational aspects are iden-

tified, the next action is to find the solu-
tion that satisfies the operational require-
ments. In an SOA, each service provides
a set of well-defined functions useful to
its users, or consumers. An example is
chat service, which allows users to per-
form online chat. A set of services may
interact in an orderly manner to provide a
complete set of mission functions. In this
way they form a mission application, or
simply application. Application is not just
a simple collection of services, but an
integral set of logically connected ser-
vices. Application and service form the
primary objects that describe the systems
aspects of an SOA. They are, in practice,
the software that needs to be built by
developers.

Finally, standards and technologies are
the primary objects that constitute the
technical foundation in implementing an
SOA. Figure 1 summarizes the approach
for formulating an SOA, along with the
primary objects. Discussed next are the
corresponding architecture views that
embody the approach in the C4ISR
framework1.

Operational View
For a concrete example, let us consider an
enterprise messaging system, which
encompasses e-mail, instant messaging
(IM), chat, and presence services. The
critical use cases are send and receive e-
mails and instant messages, participate in
a chat session, subscribe to and receive
presence notifications, etc. They are
shown in the use case diagram in Figure
2. In addition, the administrator config-
ures and administers the services.

For each use case, you may describe a
sequence of events or activities. These
activities may be presented in a hierarchy,
as in the standard activity model opera-
tional view (OV-5). Here, however, the
use cases provide a natural grouping of
those related activities. Additionally, a use
case highlights the actors and system/ser-
vice boundary, allowing you to delineate
roles and nodes easily. Hence, include use
case as part of OV-5 and consider it an
essential product for an SOA.

For an SOA, the use-case diagrams
(such as Figure 2) often identify the
nodes. These nodes are roles, organiza-
tions, shared resources, or service nodes.
You can further draw the connections
(i.e., the need lines) between the nodes,
thereby forming the operational node
connectivity description (OV-2). An
example is given in Figure 3. Except for
the use of UML deployment diagram

Service-Oriented 
Architecture

Use
Case

Application

Node

Service

StandardTechnology

Operational View

Systems View

Technical View

Enterprise 
Messaging

Send and Receive
E-mails

Send and Receive
Instant Messages

Join a Group
and Chat

Subscribe and
Receive Presence

Notification

Configuration and
Administration

Figure 1: Formulating an SOA

Service-Oriented 
Architecture

Use
Case

Application

Node

Service

StandardTechnology

Operational View

Systems View

Technical View

Enterprise 
Messaging

Send and Receive
E-mails

Send and Receive
Instant Messages

Join a Group
and Chat

Subscribe and
Receive Presence

Notification

Configuration and
Administration

Figure 2: Use Cases as Part of the Activity
Model (OV-5) for the Enterprise Messaging
System

Architecture Views and Products

The Department of Defense (DoD) Architecture Framework (AF) (which will supercede
the Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance Architecture Framework) provides the guiding principles for modeling
and designing architectures in the DoD environment (Version One is available at
<www.aitcnet.org/dodfw>). Architecture is described by three views:
• The Operational View (OV): Describes the tasks, activities, operational elements,

and information exchanges required to accomplish missions.
• The Systems View (SV): Describes systems and interconnections supporting oper-

ational functions.
• The Technical View (TV): Includes technical standards, implementation conven-

tions, rules, and criteria that guide systems implementation.
Each view has a set of products. Some are listed in the table below (the product num-
bers do not imply the order of developing them). In addition to those listed, there are
12 products and two All Views products omitted for brevity.

Views Products and Descriptions

Operational OV-1 (high-level operational concept graphic)
OV-2 (operational node connectivity description)
OV-3 (operational information exchange matrix) 
OV-5 (operational activities model)
OV-6c (operational event-trace description)

Systems SV-1 (systems interface description)
SV-2 (systems communications description)
SV-4 (systems functionality description)
SV-5 (operational activity to systems function traceability matrix)
SV-6 (system data exchange matrix)
SV-11 (physical schema)

Technical TV-1 (technical standards profile)

The Software Edge

 



Service-Oriented Architecture and the C4ISR Framework

September 2004 www.stsc.hill.af.mil 13

notations, this figure is the same as the
standard OV-2.

Finally, a description of each connec-
tion in Figure 3 gives the operational
information exchange matrix (OV-3).
Each row in the matrix describes the
provider and consumer nodes, the infor-
mation exchange, the mode of exchange
(e.g., synchronous), the security aspect,
etc. This again is the same as the standard
OV-3.

The high-level operational concept
graphics (OV-1) still applies to an SOA.
This, together with OV-5, OV-2, and OV-
3, encompasses the concepts of opera-
tion, the use cases from user’s viewpoint,
the connectivity between operational
nodes, and their information exchanges.
They therefore characterize the essential
operational aspects of an SOA.
Furthermore, since operational nodes
include shared resources and services,
dynamic and collaborative operational
activities are properly captured.

To analyze more details in the use
cases, you may use the Integration
Definition for Function Modeling
process diagrams [6] to depict the activi-
ties (including inputs, controls, outputs,
and mechanisms). This will also be part
of OV-5. Alternatively, you can use the
UML sequence diagrams (OV-6c) to
describe the details.

Systems View
As discussed earlier, application and ser-
vice are the primary objects in Systems
View (SV). In an SOA, one is more con-
cerned with the logical interaction
between service providers and con-
sumers. Rather than relying on static con-
nections, users in an SOA may select dif-
ferent services under different use cases.
Consequently, system interface descrip-
tion (SV-1) in the form of logical archi-
tecture diagrams is usually appropriate.
Logical architecture diagrams show the
connectivity between service provider
nodes (or components) and consumer
nodes. They also specify the types of
interface or communication protocols.

For efficient software management,
closely related use cases utilizing similar
services are usually grouped together and
supported by an application. Thus you
may draw a functional decomposition
diagram as systems functionality descrip-
tion (SV-4). The diagram will identify the
applications. Each application supports
one or more use cases and may have a
corresponding logical architecture dia-
gram as SV-1.

Going back to the sample enterprise
messaging system, the basic services are

e-mail, IM, chat, and presence services.
E-mail service is a familiar form of asyn-
chronous messaging and may be provided
through either a thick or thin client. The
other three services emphasize synchro-
nous interaction and therefore are best
provided through a single application to
the users. The corresponding systems
functionality description (SV-4) is shown
in Figure 4.

The SV-1 picture for the e-mail ser-
vice is shown in Figure 5. Here again,
notations similar to the UML deployment
diagrams are used. The boxes represent
nodes that are connected by channels of
data exchange. A service node has a well-
defined service interface (indicated by a
protruded match head) and supports data
exchange in certain protocols. In Figure
5, the protocols and interfaces are
HyperText Markup Language (HTML),
HyperText Transfer Protocol (Secured)
(HTTPS), Simple Mail Transfer Protocol
(SMTP), Internet Message Access
Protocol (IMAP), and the mail access
application programming interface called
Post Office Protocol v.3 (POP3).

Services are often organized into layers,
with the lowest layer containing core ser-
vices, and the upper layers containing
value-added and composite services.
Services in the upper layers use those in the
lower ones to perform specific functions.
You may use service layer diagrams such as
SV-1 to show the dependencies of such
service stacks. An example for the enter-
prise messaging system is shown in Figure
6 (see page 14), which includes the syn-
chronous messaging services and storage

and security core services. Note that a ser-
vice consumer (such as IM and Chat
Client) may dynamically connect to one of
many chat servers that provide chat service.
In this sense, the connectivity is not static.

There are situations such as in securi-
ty service or network management ser-
vice in which a system communications
description (SV-2) is more suitable than
SV-1. This is because such services are
naturally associated with physical systems
and network elements.

Node2User
Node

E-mail Service
Node

IM and Presence
Service Node

Chat Service
Node

Admin.
Node

Synch. 
Messaging

Enterprise 
Messaging

E-mail

PresenceChat Instant
Messaging

Applications

Send and Receive
E-mails

Send and Receive
Instant Messages

Join a Group
and Chat

Subscribe and
Receive Presence

Notification

Configuration and
Administration

Figure 4: Systems Functionality Description
(SV-4) for the Enterprise Messaging System

Browser

Web E-mail
Server

E-mail
Client

E-mail Server

Security
Manager

E-mail Server

Security
Manager

E-mail
Client

HTML/HTTPS

IMAP/POP3 SMTP
IMAP/POP3

Figure 5: Logical Architecture Diagram (SV-1) for the E-mail Service in the Enterprise Messaging System

Node2User
Node

E-mail Service
Node

IM and Presence
Service Node

Chat Service
Node

Admin.
Node

E-mail

Figure 3: Operational Node Connectivity
Description (OV-2) for the Enterprise
Messaging System



14 CROSSTALK The Journal of Defense Software Engineering September 2004

For an SOA, SV-4 and SV-1 (or SV-2),
capture the functional breakdown and
the logical or physical structures that sup-
port those functions.

Traditionally, system data exchange
matrix (SV-6) provides detailed data
exchange information between system
nodes. Such a matrix depicts static data
exchange connections. In contrast, data
exchange in an SOA is specified by ser-
vice contracts and a list of consumers of
the services. Services can be dynamically
published through a service broker.
Consumers may then dynamically discov-
er, subscribe, and consume the services.
Hence service contracts play the role of
SV-6 and the service broker facilitates
connection between consumers and
providers.

For instance, the emerging Web ser-
vice paradigm uses Web Services
Description Language to describe service
contracts. Simple Object Access Protocol
is used as the transport mechanism. And
Universal Description, Discovery, and
Integration may be implemented as part
of the service broker.

In addition to SV-6, other SVs may
also capture other supplementary proper-
ties of a service. For example, physical
schemas (SV-11) may be used to describe
data schemas in a service contract, and
system performance parameters for qual-
ity of service or service level agreement.
The operational activity to systems func-
tion traceability matrix (SV-5), on the
other hand, shows how the applications
satisfy the requirement by supporting the
use cases.

Technical View
The Technical View (TV) in an SOA is
the same as traditional C4ISR architec-
tures, with standards and technologies as
key elements. Here technical standards
profile (TV-1) is essential because it refer-

ences the key technical standards and
technologies employed by the SOA. The
Joint Technical Architecture [7] provides
primary references for these standards
and technologies.

Summary
Using UML techniques to supplement
the traditional C4ISR framework, I have
elucidated an approach for formulating
an SOA. On the operational side, it starts
with use cases, which involve the interac-
tion of two or more operational or ser-
vice nodes. Mission functions are provid-
ed through applications, which are imple-
mented by a set of services. The corre-
sponding C4ISR architecture products
are also discussed along with an example.

In the appendices1, I also present the
complete UML model for architectural
products in an SOA and its mapping to
the Federal Enterprise AF. It provides a
solid modeling foundation for the above
approach.

When applied to NCES, this
approach was very effective. The use
cases in the nine core enterprise services
of NCES drove the development of the
architectural products. They also provid-
ed a natural link to the NCES require-
ments and direct connection to the end
users. After developing the high-level
architecture products, detailed events for
the use cases were analyzed, service inter-
faces or contracts were defined, and met-
rics for service performance were estab-
lished.

Some topics for future investigation
on this approach include how to capture
SOA products in a Core Architecture
Data Model database, which is included
in the DoDAF; how to specify and man-
age service contracts in an SOA to ensure
interoperability across the enterprise; and
how to evaluate compatibility or compli-
ance between different SOAs.◆

References
1. U.S. Joint Forces Command. Global

Information Grid Capstone Require-
ments Document. JROCM 134-01.
Norfolk, VA: USJFCOM, Aug. 2001
<https://jdl.jwfc.jfcom.mil>.

2. C4ISR Architecture Working Group.
C4ISR Architecture Framework Vers.
2.0. Washington, D.C.: Department of
Defense, 18 Dec. 1997 <www.fas.
org/irp/program/core/fw.pdf>. The
next version is the DoD Architecture
Framework Vers. 1.0. 15 Aug. 2003
<www. aitcnet.org/dodfw>.

3. Global Information Grid Enterprise
Services. Initial Capabilities Docu-
ment for Global Information Grid

Enterprise Services. Arlington, VA:
GIG ES, 9 Sept. 2003 <http://
ges.dod.mil>.

4. Net-Centric Operations and Warfare
Reference Model, Draft Vers. 1.0. 20
Oct. 2003 <https://disain.disa.mil/
ncow. html>.

5. Object Management Group, Inc.
Unified Modeling Language (UML),
Vers. 1.5. Needham, MA: OMG, Mar.
2003 <www.omg.org/technology/
documents/formal/uml.htm>.

6. National Institute of Standards and
Technology. Integration Definition
for Function Modeling (IDEF0).
Federal Information Processing
Standards Publication 183. Gaithers-
burg, MD: NIST, Dec. 1993.

7. JTA Development Group. Joint
Technical Architecture Vers. 5.1.
Washington, D.C.: U.S. Department
of Defense, 12 Sept. 2003 <www.jta
online.disa.mil>.

Notes
1. Additional details on this and other

developments can be found in this
article’s online version at <www.stsc.
hill.af.mil/crosstalk>. In the PDF
version, click on the appendices link.

Storage

Service
Security

Service

E-mail

Service

Chat

Service

Web

Presentation

E-mail

Client
Browser

IM and

Chat Client

IM

and Presence

Service

Figure 6: The Enterprise Messaging System
Represented as a Service Stack (SV-1)

About the Author

Yun-Tung Lau, Ph.D.
is assistant vice president
of Technology at Science
Applications Interna-
tional Corporation. He
has been involved in

large-scale software architecture, design,
and development for 14 years. Lau has
served as chief architect for many soft-
ware and enterprise architecture pro-
jects, from scientific computing, to elec-
tronic commerce, to command and con-
trol systems. He has published many
articles in professional journals and has
written “The Art of Objects: Object-
Oriented Design and Architecture.”
Originally trained as a theoretical physi-
cist at Massachusetts Institute of
Technology, Lau also has a Master of
Technology Management.

Science Applications 
International Corporation
5107 Leesburg Pike STE 2000
McLean,VA 22041
Phone: (703) 824-5817
Fax: (703) 824-5836
E-mail: yun-tung.lau@saic.com

The Software Edge

 




